21 research outputs found

    Decoherence on Staggered Quantum Walks

    Full text link
    Decoherence phenomenon has been widely studied in different types of quantum walks. In this work we show how to model decoherence inspired by percolation on staggered quantum walks. Two models of unitary noise are described: breaking polygons and breaking vertices. The evolution operators subject to these noises are obtained and the equivalence to the coined quantum walk model is presented. Further, we numerically analyze the effect of these decoherence models on the two-dimensional grid of 44-cliques. We examine how these perturbations affect the quantum walk based search algorithm in this graph and how expanding the tessellations intersection can make it more robust against decoherence.Comment: 17 pages, 14 figure

    Spatial search in a honeycomb network

    Full text link
    The spatial search problem consists in minimizing the number of steps required to find a given site in a network, under the restriction that only oracle queries or translations to neighboring sites are allowed. In this paper, a quantum algorithm for the spatial search problem on a honeycomb lattice with NN sites and torus-like boundary conditions. The search algorithm is based on a modified quantum walk on a hexagonal lattice and the general framework proposed by Ambainis, Kempe and Rivosh is used to show that the time complexity of this quantum search algorithm is O(NlogN)O(\sqrt{N \log N}).Comment: 10 pages, 2 figures; Minor typos corrected, one Reference added. accepted in Math. Structures in Computer Science, special volume on Quantum Computin

    Quantum Search Algorithms on Hierarchical Networks

    Full text link
    The "abstract search algorithm" is a well known quantum method to find a marked vertex in a graph. It has been applied with success to searching algorithms for the hypercube and the two-dimensional grid. In this work we provide an example for which that method fails to provide the best algorithm in terms of time complexity. We analyze search algorithms in degree-3 hierarchical networks using quantum walks driven by non-groverian coins. Our conclusions are based on numerical simulations, but the hierarchical structures of the graphs seems to allow analytical results.Comment: IEEE Information Theory Workshop 201

    Mixing Times in Quantum Walks on Two-Dimensional Grids

    Full text link
    Mixing properties of discrete-time quantum walks on two-dimensional grids with torus-like boundary conditions are analyzed, focusing on their connection to the complexity of the corresponding abstract search algorithm. In particular, an exact expression for the stationary distribution of the coherent walk over odd-sided lattices is obtained after solving the eigenproblem for the evolution operator for this particular graph. The limiting distribution and mixing time of a quantum walk with a coin operator modified as in the abstract search algorithm are obtained numerically. On the basis of these results, the relation between the mixing time of the modified walk and the running time of the corresponding abstract search algorithm is discussed.Comment: 11 page

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa
    corecore